Hyperspaces of compact sets in metric linear spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Banach-Like Distances and Metric Spaces of Compact Sets

In the first part we study general properties of the metrics obtained by isometrically identifying a generic metric space with a subset of a Banach space; we obtain a rigidity result. We then discuss the Hausdorff distance, proposing some less–known but important results: a closed–form formula for geodesics; generically two compact sets are connected by a continuum of geodesics. In the second p...

متن کامل

Computational Models of Certain Hyperspaces of Quasi-metric Spaces

In this paper, for a given sequentially Yoneda-complete T1 quasi-metric space (X, d), the domain theoretic models of the hyperspace K0(X) of nonempty compact subsets of (X, d) are studied. To this end, the ω-Plotkin domain of the space of formal balls BX, denoted by CBX is considered. This domain is given as the chain completion of the set of all finite subsets of BX with respect to the Egli-Mi...

متن کامل

Compact Quantum Metric Spaces

We give a brief survey of many of the high-lights of our present understanding of the young subject of quantum metric spaces, and of quantum Gromov-Hausdorff distance between them. We include examples. My interest in developing the theory of compact quantum metric spaces was stimulated by certain statements in the high-energy physics and string-theory literature, concerning non-commutative spac...

متن کامل

Covering compact metric spaces greedily

Abstract. A general greedy approach to construct coverings of compact metric spaces by metric balls is given and analyzed. The analysis is a continuous version of Chvátal’s analysis of the greedy algorithm for the weighted set cover problem. The approach is demonstrated in an exemplary manner to construct efficient coverings of the n-dimensional sphere and n-dimensional Euclidean space to give ...

متن کامل

Learning Over Compact Metric Spaces

We consider the problem of learning on a compact metric space X in a functional analytic framework. For a dense subalgebra of Lip(X), the space of all Lipschitz functions on X, the Representer Theorem is derived. We obtain exact solutions in the case of least square minimization and regularization and suggest an approximate solution for the Lipschitz classifier.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1986

ISSN: 0166-8641

DOI: 10.1016/0166-8641(86)90001-5