Hyperspaces of compact sets in metric linear spaces
نویسندگان
چکیده
منابع مشابه
Banach-Like Distances and Metric Spaces of Compact Sets
In the first part we study general properties of the metrics obtained by isometrically identifying a generic metric space with a subset of a Banach space; we obtain a rigidity result. We then discuss the Hausdorff distance, proposing some less–known but important results: a closed–form formula for geodesics; generically two compact sets are connected by a continuum of geodesics. In the second p...
متن کاملComputational Models of Certain Hyperspaces of Quasi-metric Spaces
In this paper, for a given sequentially Yoneda-complete T1 quasi-metric space (X, d), the domain theoretic models of the hyperspace K0(X) of nonempty compact subsets of (X, d) are studied. To this end, the ω-Plotkin domain of the space of formal balls BX, denoted by CBX is considered. This domain is given as the chain completion of the set of all finite subsets of BX with respect to the Egli-Mi...
متن کاملCompact Quantum Metric Spaces
We give a brief survey of many of the high-lights of our present understanding of the young subject of quantum metric spaces, and of quantum Gromov-Hausdorff distance between them. We include examples. My interest in developing the theory of compact quantum metric spaces was stimulated by certain statements in the high-energy physics and string-theory literature, concerning non-commutative spac...
متن کاملCovering compact metric spaces greedily
Abstract. A general greedy approach to construct coverings of compact metric spaces by metric balls is given and analyzed. The analysis is a continuous version of Chvátal’s analysis of the greedy algorithm for the weighted set cover problem. The approach is demonstrated in an exemplary manner to construct efficient coverings of the n-dimensional sphere and n-dimensional Euclidean space to give ...
متن کاملLearning Over Compact Metric Spaces
We consider the problem of learning on a compact metric space X in a functional analytic framework. For a dense subalgebra of Lip(X), the space of all Lipschitz functions on X, the Representer Theorem is derived. We obtain exact solutions in the case of least square minimization and regularization and suggest an approximate solution for the Lipschitz classifier.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1986
ISSN: 0166-8641
DOI: 10.1016/0166-8641(86)90001-5